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ABSTRACT
The effect of water on the thermal expansion behavior of FM5055 carbon phenolic is studied using a

theory of mixtures approach. A partial pressure expression for the water constituent was obtained
based upon certain assumptions regarding the thermodynamic state of water as it resides in the free
volumes of the polymer. A simple constitutive model is used to simulate the polymer strain due to the
application of the partial pressure of water. The resulting theory is applied to model the effect of
moisture on the thermal expansion of FM5055 carbon phenolic specimens. The application of the
theory results in calculated strains which were in close agreement with the measured strains.

INTRODUCTION
The thermal expansion behavior of phenolic polymer composite materials is significantly

influenced by the amount of moisture which exists in the composite prior to heating. The effect of
water has been measured in studies by Stokes and Koenig 1990 and Stokes 1990a. The presence of
water in the free volumes of the polymer during heating has two primary effects: it lowers the glass
transition temperature of the polymer and it generates internal stresses in the polymer network due to
thermal excitation of the water in a confined volume. These internal stresses, in turn, affect the

apparent thermal expansion behavior.
In a recent study, Sullivan (1995) used a mixtures approach to model the effect of water on thermal

stresses in polymer composites. Sullivan developed a partial pressure expression for the water based
on certain assumptions regarding the thermodynamic state of water as it resides in the free volumes of
the polymer. The objective of the present paper is to apply the partial pressure expression for water
developed in Sullivan (1995) to model the effect of water on the thermal expansion behavior of
FM5055 carbon phenolic. This will require a slight modification of the theory since in that work it
was assumed that the mixture was elastic and since the thermal expansion strain measured by Stokes
(1990a) has irreversible as well as elastic components. In the present work, we will employ a simple
constitutive model which has both elastic and irreversible components to simulate the polymer strain
under the application of the partial pressure of water. In the final section, the resulting theory is
applied to simulate the effect of water on the thermal expansion of FM5055 carbon phenolic
specimens. We simulate the conditions imposed during the tests conducted by Stokes (1990a).



THEORETICAL DEVELOPMENT

The Diffusion Eauatlon

We study the physics of heating a polymer composite material containing water inthe free volumes

of the polymer from within the framework of the mixtures theory. In this regard, we may conceive of
the water in the free volumes and the polymer network itself as constituting a binary, miscible

mixture. The theory developed in Sullivan (1995) assumes that the strain states of the mixture remain

inf'mitesimal and therefore the mixture occupies a fixed control volume. The partial density of water in

the mixture Pw is therefore only dependent upon the mass concentration of water in the free volumes.

Within this mixture, the local mass concentration of water may vary with spatial location. The

variation of the moisture content with space and time depends upon the process of diffusion of water
through the polymer network. The differential equation governing the flow of water through the

polymer network is written

Pw - div (D grad Pw) = 0 (i)

where D is the diffusivity coefficient and Pw is the local time derivative of the partial density of water.

In equation (1), the forces which drive the diffusion of water through the polymer are due only to the

concentration gradients. The choice of equation (1) as the diffusion equation implies that the effect of

stress on the diffusion process can be neglected. This is not true as a general rule. However, for the

purpose of the present simulation, this assumption will be sufficient. We will see the consequences of

this assumption when the theory is applied in the following sections and the numerical results are

compared to measurements.

An Expression for the Partial Stress of Water

The total stress of the mixture _ is the sum of the partial stresses, that is

Or = _P + _w (2)

where _rP is the partial stress tensor of the polymer and _w is the partial stress tensor of the water.

Equation (2) is merely Dalton's law of partial pressures (Guggenheim, 1933) which was originally

intended for gaseous mixtures. Its application here is more general since we will apply equation (2) to

a mixture of condensed phases.

In the most general sense, the partial stresses are functions of the independent variables _, T and Pw"

However, for our purposes here we will assume that the partial stress of water is independent of the

strain state. Therefore, we have that

_rw = _rw (T,Pw). (3)

From (3), the differential increment in the partial stress of the water may be written in the expanded
form as

d{_w = U--dT-/p w dT + T dPw (4)

where the subscripts on the brackets indicate differentiation with those variables held constant.

Assuming that the second term in (4) is negligible in comparison to the f'trst term, (4) becomes

simply

d_ w = _---d_/p w dT.
(5)



We must now determine the relation between the partial stress of water and increments in temperature

as the polymer and water mixture are heated under constant composition conditions. For this purpose,

we start with Gibbs expression (Guggenheim, 1933)

dlaw = Vw dP- S wdT (6)

where _w is the chemical potential of water in the mixture, V w is the partial volume and S w is the

partial entropy. If we assume that as this mixture is heated, the chemical potential of the water does

not vary then (6) becomes

V w dP = S wdT. (7)

Integrating both sides of (7), while taking the partial volume independent of the pressure, and

substituting Pw = 1]Vw, we obtain

Pw = po + Pw S w dT (8)

where po is the partial pressure of water at temperature T O . Substituting the specific entropy of water

S w for the partial entropy, equation (8)becomes

= P_v + Pw s wdT•Pw o (9)

In arriving at equation (8), we integrated the left side of (7) with the partial volume independent of

pressure. This is justified since the partial density and therefore the partial volume are only dependent

upon the diffusion process and since by using equation (1) we are assuming that the diffusion occurs

independent of the partial pressure.

Constitutive Relations for the Polymer Strain

At temperatures below the glass transition temperature, the polymer is in a glassy state and behaves

as a linear elastic solid• At temperatures above the glass transition temperature, the polymer behaves

rubbery exhibiting both elastic as well as irreversible deformations during loading (Meares, 1965). In

the rubbery state, we specify that the dilatational response is linear elastic and that the distortional

strain response has elastic and irreversible components.

The polymer strain components eij may be written in terms of the deviatoric eij and dilatational e
parts as

eij = eij + ½ e _ij" (10)

where we now specify that 1

e = e e eij = e_ + e_. (11)

Substituting equations (11), equation (10) is written

^e ir 1 e
eij=eij+_ J +3-e _Sij. (12)

1 The mechanical model described by the second expression in (11) is similar to a Maxwell solid since the distortional
strain is simply the sum of the elastic and irreversible components.



Wewillassumethatthepolymeris isotropicin itsmechanicalresponse.Theconstitutiverelations
fortheelasticresponsearegivenbytherelationsforanisotropicel_ticsolidwhichare

1
8_=_-(]:_ijl p. ee=_ C_k (13)

wheretherepeatedindicesimplysummation.In(13),GandK aretheelasticshearandtheelasticbulk
modulusof thepolymer,respectivelyand_ is thepolymerdeviatoricstresscomponents.Forthe
irreversiblestrain,weusetheconstitutiverelation

_1_="f_l ¢_dt (14)

where 11 is the viscosity of the polymer and t is the time variable. Substituting equations (13) and (14)

into (12) yields for the polymer strain

1 p. 1 .. 1 p.
eij = _ t_ij + _ t_k _j + f __ _ij dt

(15)

where the last term is zero when the temperature is below the glass transition temperature.

APPLICATION TO THE FREE THERMAL EXPANSION EXPERIMENT

Test Description

We will now apply the equations established in the previous section to model the effect of water on

the thermal expansion of FM5055. We will simulate the conditions imposed during the tests reported

in Stokes (1990a) where cylindrical specimens made of FM5055 carbon phenolic were heated

uniformily at a constant rate of 5.5°C/see. The specimens were 0.635 cm in diameter and 2.54 cm in

length and were fabricated such that the direction transverse to the fabric plane was aligned with the

axial direction of the specimen (Figure 1). As the specimens were heated, the strain in the axial

direction was measured as a function of temperature. The oven chamber in which the specimens were

heated was maintained at zero percent relative humidity.
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FIGURE 1. SKETCH OF CARBON PHENOLIC SPECIMEN FROM STOKES (1990a).



Stokes (1990a) measured the transverse thermal expansion strain for specimens containing three
different initial moisture contents: 0%, 4% and 8% initial moisture. The measured results from Stokes

are shown in Figure 2.

FIGURE 2.
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THERMAL EXPANSION MEASURED BY STOKES (1990a).

The strain response due to water may be isolated by subtracting the strain response for the 0%

moisture specimen from the response for the 4% and 8% moisture specimens. This yields the two

strain profiles shown in Figure 3 which we shall refer to as the moisture-induced thermal expansion.

FIGURE 3.
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MOISTURE-INDUCED THERMAL EXPANSION VERSUS TEMPERATURE.

Diffusion Eauation Solution

We will assume that the diffusion of water in the cylindrical specimens occurs in only the radial

direction. For cylindrical coordinates, the one-dimensional form of (1), with diffusion in only the
radial direction, is written

P'w- } {_i:(r Dr-_)) = 0 (16)

where D r is the diffusivity of water in the radial direction.



Theboundaryandinitialconditions which are imposed are

Pw (a, 0 = 0 and pw(r,0): pi,

respectively where a is the radial dimension of the specimen and P_v is the initial partial density of

water in the specimen. The initial partial density is estimated as the product of the initial moisture

content and the dry density of the composite. In the case of FM5055, we'll approximate the dry

density as 1.5 g/cc.
The diffusion equation, (16), is solved numerically under the imposed boundary and initial conditions

using the finite element method. The Galerkin weighted residual method was used to cast the diffusion

equation into a matrix equation which is necessary for the numerical solution. Linear, one-

dimensional elements were used to discretize the domain of the problem and to implement the finite
element method.

Mlnlmechanlcs and the Effect of Carbon Flbers on the Response

Due to the presence of the carbon fiber reinforcement, the average strain in the polymer is one-

dimensional: err = e00 = 0. The average stress state in the polymer due to the partial pressure of water
is therefore

-PwO o[O-Pw o .
o o Pw

(17)

Now since the stress tensor and the deviatoric stress tensor are related by

Oij = _ij - ½ gkk 8ij (18)

the polymer deviatoric stress tensor is

- Pw o o ]
o

o o  l'w

(19)

Substituting equations (17) and (19) into (15), we obtain for the transverse strain component, i=z and

j=Z,

e (1 + 2v) D
zz= _ _-w+-} f _Pw dt (20)

where E and v are the Young's modulus and Poisson's ratio for the polymer, respectively and are related

to G and K by the familiar relations

G _ ___(.r.__ E K= 3 (1E2v)_ . (21)

Once again, the last term in (20) is zero at temperatures below the glass transition temperature.

Descdptlon of the Material Constants
The variation of the moisture diffusivity with temperature is illustrated in Figure 4. The moisture

diffusivities measured by Stokes (1990b) are plotted as hollow circles and the moisture diffusivity

model which is used for the simulation is shown as a solid line. The solid line is merely a linear fit

through the two extreme measured data points and extrapolated to higher temperatures.
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FIGURE 4. DIFFUSIVITY VERSUS TEMPERATURE.

The variation of the elastic Young's modulus with temperature is iUustrated in Figure 5. The values
measured by Stokes (1990a) are plotted as hollow circles and hollow squares for the 4% and 8%
moisture specimens, respectively. The description of the modulus variation with temperature, which is
used for this simulation, is shown as a solid and dashed line for the 4% and 8% moisture specimens,
respectively.
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FIGURE 5. ELASTIC MODULUS VERSUS TEMPERATURE.

In addition, we use a constant value of 0.3 for the polymer Poisson's ratio and a constant polymer
viscosity of 100000.0 MPa-sec for this simulation.

RESULTS
The numerical solution of the diffusion equation under the imposed boundary and initial conditions

yields the local partial density of water in the specimens as a function of radial location and time.
Figure 6a and 6b show the results for the 8% and 4% moisture conditions, respectively. Initially, the
partial density is uniform throughout the specimen. As the temperature increases, the diffusivity
increases according to the model illustrated in Figure 4. The radial diffusion of water begins to occur at
approximately 300°C when the diffusivity has reached a sufficient value. Diffusion continues until
approximately 450°C when there is no water left in the specimens.



0.15"

o

0.10

b
o

O O.05

g.

0._

--'-'-'---425 C_

U.O 0.2 0.4 0.6 0.8 1,0

radius ratio (-)

a. 8% INITIAL MOISTURE

o

o

a

#.

0.08"

0.06

0.04

0.02

0.00

_oc

--'-"----425 C

0.0 0.2 0.4 0.6 0.8 1.0

radius ratio (-)

b. 4% INITIAL MOISTURE

FIGURE 6. PARTIAL DENSITY OF WATER VERSUS RADIAL LOCATION.

• fA volume average partial density may be calculated at each temperature by _ = PwdV/V where

V is the volume of the specimen. For this specific problem, where the partial density is only a
function of the radial location and time and where the time variable is related to the temperature

variable by a constant, the volume average partial density is expressed specifically as

(22)

The volume average partial density is calculated at each temperature using equation (22) and the results

shown in Figures 6. The volume average partial density of water for the two initial moisture

conditions are shown in Figure 7.
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FIGURE 7. VOLUME AVERAGE PARTIAL DENSITY VERSUS TEMPERATURE.



The average partial pressure of water in the specimens is calculated using equation (9) with po set

equal to zero and using the volume average partial density shown in Figure 7. The numerical values for

S w are obtained from Keenan, et al. (1969). The variation of s w with temperature is specified by the

path along the liquid portion of the saturation curve (Kestin, 1966). The average partial pressure for
the two moisture conditions are shown in Figure 8. The partial pressure increases with temperature

from room temperature to 325°C since the specific entropy of water is a positive function of
temperature. The increase in the partial pressure with temperature is governed by the integral term in
equation (9). As the diffusion of water occurs above 325°C, the partial pressure drops with the drop in

the partial density and falls to zero at approximately 450°C when the average partial density becomes
zero.
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FIGURE 8. VOLUME AVERAGE PARTIAL PRESSURE VERSUS TEMPERATURE.

The transverse strain is calculated from equation (20) using the partial pressures of Figure 8 and the

elastic modulus description illustrated in Figure 5. The results are shown in Figure 9 along with the

moisture-induced strain profiles from Figure 3 which are plotted as hollow circles and hollow squares.

For both moisture conditions, there is close agreement between the calculated and measured peak

strains. Also, for the 4% moisture condition, the calculated inelastic strain is the same as that which
was measured. For the 4% moisture condition, the calculated peak strain temperature is consistent with

the measured peak strain temperature. For the 8% moisture condition, however, the calculated peak

strain temperature lags the measured by 50°C.
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FIGURE 9. CALCULATED AND MEASURED STRAIN VERSUS TEMPERATURE.



DISCUSSION AND CONCLUSIONS

The partial pressure expression developed in Sullivan (1995) has b_en applied to model the effect of

water on the thermal expansion behavior of FM5055 carbon phenolic. The strains obtained through

application of the theory compared fairly well with those measured by Stokes (1990a). This provides

another verification of the accuracy of the partial pressure expression and the assumptions which were

used in the development.

The accuracy of the model may be improved further with a few modifications. For example, the slope

of the calculated strain between the glass transition temperature and the peak strain temperature is not

consistent with the slope of the moisture-induced strains. This may be due to the very simple

constitutive model which was employed for this simulation. Alternative constitutive models should be

investigated in future studies.

Furthermore, as we have previously stated, the choice of equation (1) to model the diffusion process

implies that the diffusion of water is independent of the stress state. Consequently, the numerical

results obtained from the solution of (1) yield the same diffusion rate for both moisture conditions

(Figures 6 and 7). The moisture-induced strains in Figure 3, however, indicate that the diffusion of

water occurs faster in the 8% moisture specimen than in the 4% specimen. This is due to the higher
partial pressures in the 8% moisture specimen which cause higher stress gradients and an increase in

the diffusion rate. At higher heating rates, the effect of stress on the diffusion rate will become more

significant. In future studies, a stress-dependent diffusion equation should be employed to account for
this effect.
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